Tuesday, August 31, 2021

Units and Measurement Notes : Physics

 

UNITS AND MEASUREMENTS

  • Physical Quantity-
           All the quantities in terms of laws of physics are described and which can be measured directly or indirectly are called physical quantities. For example mass, length, time, speed, force etc.
    
  • Types of Physical Quantity-
  1. Fundamental quantities : The physical quantities which do not depend upon other physical quantities are called fundamental or base physical quantities. e.g. mass, length, time temperature electric current, luminous intensity and amount of substance.
  2. Derived quantities : The physical quantities which depend on fundamental quantities are called derived quantities
    e.g. speed, acceleration, force, etc.

  • Unit-
    • Unit is the standard quantity used for comparison.
    • The chosen standard for measurement of a physical quantity is called the unit of that quantity.
    • Every measured quantity (its magnitude) comprises of a number and a unit. Ex: In the measurement of length, say 20 m. Where 20 is the numeral while m is unit (meter).
  • Fundamental Units-
    • Fundamental Units are those, which are independent of units of any other Physical quantity.
    • Fundamental units are those, which cannot be resolved into any other unit.
    • Examples - kilogram(kg), meter(m), second(s), etc.
  • Derived Units
    • All units other than fundamental units are known as derived units.
    • Basically derived units are depend on the fundamental units.
    • Examples- 
      • Unit of speed which depends on the unit of distance and unit of second (m/s).
  • System Of Units-
    • System of is the combination of Fundamental Units and Derived Units for all Physical Quantity.
  • Types of System of Units-
    • F.P.S. (Foot-Pound-Second) System- It is British Engineering system of units.
      • In this system Length measures in Foot, Mass measure in Pound and Time measures in Second.
    • C.G.S. (Centimeter-Gram-Second)-  It is Gaussian system of units.
      • In this system Length measures in Centimeters, Mass measures gram and Time measures in Second.
    • M.K.S. (Meter-Kilogram-Second)- It is related to Mechanics only.
      • In this system Length measures in Meter, Mass Measure in Kilogram and Time Measures in Second.
    • S.I. (International System)- 
      • To avoid the confusion with the various units measured by different methods by different countries the International System is introduced in 1971. 
      • Through which seven Physical quantities have been chosen as a fundamental 
      • physical quantities and two as a supplementary quantities.  

  • Method of writing of Units and their symbols-
    • Unit is never written in CAPITAL initial letter. 
    • If the unit is named after scientist name then only it can be written in Capital initial letter form.
    • Unit is never written in plurals form.
    • Punctuation marks are not written after the symbol.

  • S.I. Prefixes-

 

What is the unit for Large distances?  (Macro-Cosm)

Light year: It is the distance travelled by the light in vacuum in one year.
1 ly = 9.46 × 1015m (ly= light year).

Astronomical unit: It is the average distance of the centre of the sun from the centre of the earth.
1 A.U. = 1.496 × 1011m.

Parsec: One parsec is the distance at which an arc 1A.U. long subtends an angle of one second.
1 parsec = 3.1 × 1016m.


What is the unit for heavy mass?

1 ton = 1000kg
1 quintal = 100kg
1 slug = 14.57kg
1 C.S.L (chandrasekhar limit) = 1.4 times the mass of the sun.


What is the unit for large time?

Lunar month: It is the time taken by the earth to complete one rotation about its axis with respect to sun.

1L.M.  = 27.3 days.

Solar day: It is the time taken by the earth to complete one rotation about its axis with respect to sun.

Sedrial day: It is the time taken by earth to complete one rotation on its axis with respect to distant star.


What is the unit for very small distance? (Micro-Cosm)

1 micron = 10–6m.
1 nanometre = 10–9m.
1 angstorm = 10–10m.
1 fermi = 10–15m.


What is the unit for small area?

1 barn = 10–28m2.


What is the unit for small mass?

1 amu = 1.67 x 10–27kg.

1 pound = 453.6g = 0.4536 kg.


What is the unit for small time?

1 shake = 10–8s


What is the unit for measuring for pressure?

1 bar = 1atm pressure = 105N/m2 = 760mmHg

1torr = 1 mmHg

1 Poiseuille = 10 Poise.









Wednesday, August 25, 2021

Biotechnology and Its Application: Biology

 click here (For More Questions based on Biology )

Q.1. Polymerase chain Reaction (PCR) was discovered by

A) Eli Lilly

B) Tsan

C) Cohen

D) Kary Mullis


Q.2. The molecular binder in genetic engineering are

A) polymerase

B) endonuclease

C) ligase

D) permease    


Q.3. Taq polymerase enzymes is found in

A) Thermus aquaticus

B) E.coli

C) Pseudomonas

D) Agrobacterium


Q.4. Which enzymes is used in the polymerase chain reaction?

A) Restriction enzymes

B) Reverse transcriptase

C) Ligase

D) DNA polymerase


Q.5. Enzymes used in PCR is

A) Taq polymerase

B) gyrase

C) transcriptase

D) hexokinase


Q.6. Which of the following  is employed in recombination DNA technology ?

A) Plastids

B) Plasmids

C) Ribosomes

D) Histones


Q.7. Genetic engineering would not have been possible in the absence of

A) DNA polymerase

B) Reverse transcriptase

C) DNA ligase

D) RNA synthetase


Q.8. An attenuated virus

A) is a virus that is non-pathogenic

B) is an elongated viral particle

C) can transfer recombination DNA to other viruses

D) will not produce an immune response


Q.9. Which is the first enzymes used in the production of DNA fragments and DNA fingerprints?

A) Restriction enzymes

B) Reverse transcriptase

C) Ligase

D) DNA polymerase


Q.10. Which of the following is used in genetic engineering as well?

A) DNA Polymerase

B) Nuclease

C) Restriction endonuclease

D) RNA polymerase

Mathematical Induction: Mathematics MCQ

 

Q.1. I f space space n greater than 1 comma space a n d space left parenthesis 1 plus x right parenthesis to the power of n space end exponent equals C subscript 0 plus end subscript C subscript 1 x plus C subscript 2 x squared plus... C subscript n x to the power of n space t h e n space
v a l u e space o f space C subscript 0 minus end subscript 2 C subscript 1 plus 3 C subscript 2 minus 4 C subscript 3 plus.... plus left parenthesis negative 1 right parenthesis space blank to the power of n left parenthesis n plus 1 right parenthesis C subscript n space i s

A) -1

B) 0

C) 1

D) 2

Explanation-

P u t t i n g space x equals negative 1 space i n space t h e space e q u a t i o n left parenthesis 1 right parenthesis space o f space a l t e r n a t i v e space s o l u t i o n space t o space
E x a m p l e space 9 comma space w e space g e t
C subscript 0 minus 2 C subscript 1 plus 3 C subscript 2 minus 4 C subscript 3 plus... plus open parentheses negative 1 to the power of n close parentheses open parentheses n plus 1 close parentheses C subscript n equals 0 plus 0 equals 0 


Q.2.  P u t t i n g space x equals negative 1 space i n space t h e space e q u a t i o n left parenthesis 1 right parenthesis space o f space a l t e r n a t i v e space s o l u t i o n space t o space
E x a m p l e space 9 comma space w e space g e t
C subscript 0 minus 2 C subscript 1 plus 3 C subscript 2 minus 4 C subscript 3 plus... plus open parentheses negative 1 to the power of n close parentheses open parentheses n plus 1 close parentheses C subscript n equals 0 plus 0 equals 0 

A) (35,45)

B) (20,45)

C) (35,20)

D) (45,35)

Explanation-

open parentheses 1 minus y close parentheses to the power of m space open parentheses 1 plus y close parentheses to the power of n space equals open parentheses 1 minus m y plus blank to the power of m C subscript 2 y squared minus... close parentheses space open parentheses 1 plus n y plus blank to the power of n C subscript 2 y squared plus... close parentheses
equals space 1 plus open parentheses n minus m close parentheses y plus open parentheses blank to the power of n C subscript 2 plus blank to the power of m C subscript 2 minus m n close parentheses space y squared plus...
w e space a r e space g i v e n
n minus m equals a subscript 1 space end subscript equals 10
space space space space space space space space space space to the power of n C subscript 2 plus blank to the power of m C subscript 2 minus m n space equals a subscript 2 equals 10.
rightwards double arrow space space space space space space n equals m plus 10 space a n d
space space space space space space space space space space space 1 half n open parentheses n minus 1 close parentheses plus 1 half m open parentheses m minus 1 close parentheses minus m n equals 10
rightwards double arrow space space space space space space open parentheses m plus 10 close parentheses space open parentheses m plus 9 close parentheses plus m open parentheses m minus 1 close parentheses minus 2 m open parentheses m plus 10 close parentheses equals 20
rightwards double arrow space space space space space space space m squared plus 19 m plus 90 plus m squared minus m minus 2 m squared minus 20 m space equals 20
rightwards double arrow space space space space space space minus 2 m equals space minus 70 space space rightwards double arrow space space m equals 35.
therefore space space n equals 45 


Q.3. In the expansion of  open parentheses straight x cubed minus 1 over straight x squared close parentheses to the power of 15 , the constant term equals

A) blank to the power of 15 C subscript 9 to the power of blank end subscript

B) 0

C) -open parentheses blank to the power of 15 C subscript 9 close parentheses

D)blank to the power of 15 C subscript 11 

Explanation-

T subscript r plus 1 comma space t h e space left parenthesis r plus 1 right parenthesis t h space t e r m space i n space t h e space e x p a n s i o n space o f space open parentheses x cubed minus 1 over x squared close parentheses to the power of 15 space i s end subscript
space space space space space T subscript r plus 1 space equals end subscript to the power of 15 C subscript r space open parentheses x cubed close parentheses to the power of 15 minus r end exponent space open parentheses negative 1 over x squared close parentheses to the power of r space equals blank to the power of 15 C subscript r space left parenthesis negative 1 right parenthesis to the power of r space X to the power of 45 minus 5 r end exponent
T o space o b t a i n space c o n s tan t space t e r m comma space w e space s e t space 45 minus 5 r space equals 0 space rightwards double arrow r space equals 9
therefore space C o e f f i c i e n t space o f space c o n s tan t space t e r m space i s space blank to the power of 15 C subscript 9 space left parenthesis negative 1 right parenthesis to the power of 9 space end exponent equals negative blank to the power of 15 C subscript 9    


Q.4. If x to the power of 2 k space end exponent space o c c u r s space i n space t h e space e x p a n s i o n space o f space open parentheses x plus 1 over x squared close parentheses to the power of n minus 3 end exponent comma space t h e n 

A) n- 2k is multiple of 2

B) n- 2k is a multiple of 3

C) k=0

D) none of these

Explanation-

T subscript r plus 1 space end subscript t h e space left parenthesis r plus 1 right parenthesis t h space t e r m space i n space t h e space e x p a n s i o n space o f space open parentheses x plus 1 over x squared close parentheses to the power of n minus 3 end exponent space i s space g i v e n n
b y
space space T subscript r plus 1 space equals space end subscript to the power of n minus 3 end exponent C subscript r space open parentheses x close parentheses to the power of n minus 3 minus r end exponent open parentheses 1 over x squared close parentheses to the power of r space equals blank to the power of n minus 3 end exponent C subscript r x to the power of n minus 3 minus 3 r end exponent
A s space x to the power of 2 k end exponent space o c c u r s space i n space t h e space e x p a n s i o n space o f space open parentheses x plus 1 over x squared close parentheses to the power of n minus 3 end exponent comma space w e space m u s t space h a v e space n minus 3 minus 3 r equals 2 k
f o r space s o m e space n o n minus n e g a t i v e space i n t e g e r space r.
rightwards double arrow 3 left parenthesis 1 plus r right parenthesis equals n minus 2 k space space space space rightwards double arrow space n minus 2 k space i s space a space m u l t i p l e space o f space 3. 


Q.5. If the coefficients of x to the power of 2 space end exponent a n d space x to the power of 8 space i n space open parentheses 2 plus x over 3 close parentheses to the power of n space end exponent are equal, then value of n is

A) 56

B) 55

C) 47

D) 19

Explanation-

T subscript r space plus 1 comma space t h e space left parenthesis r plus 1 right parenthesis space t h space t e r m space i n space t h e space e x p a n s i o n space o f space open parentheses 2 plus x over 3 close parentheses space i s space g i v e n space b y end subscript
T subscript r plus 1 space equals space scriptbase C subscript r to the power of 2 to the power of n minus r end exponent end exponent space open parentheses table row x row 3 end table close parentheses space equals blank to the power of n space end scriptbase presuperscript n C subscript r open parentheses table row cell 2 to the power of n minus r end exponent end cell row cell 3 to the power of r end cell end table close parentheses space x to the power of r end subscript
A c c o r d i n g space t o space t h e space g i v e n space c o n d i t i o n
blank to the power of n C subscript 7 open parentheses table row cell 2 to the power of n minus 7 end exponent end cell row cell 3 to the power of 7 end cell end table close parentheses space equals blank to the power of n C subscript 8 space open parentheses table row cell 2 to the power of n minus 8 end exponent end cell row cell 3 to the power of 8 end cell end table close parentheses space space rightwards double arrow open parentheses table row cell blank to the power of n C subscript 8 end cell row cell n to the power of blank C subscript 8 to the power of blank end subscript end cell end table close parentheses space equals open parentheses table row cell 2 to the power of n minus 8 end exponent end cell row cell 3 to the power of 8 end cell end table close parentheses. open parentheses table row cell 3 to the power of 7 end cell row cell 2 to the power of n minus 7 end exponent end cell end table close parenthesesrightwards double arrow fraction numerator n factorial over denominator 7 factorial space left parenthesis n minus 7 right parenthesis space factorial space end fraction space fraction numerator 8 factorial space left parenthesis n minus 8 right parenthesis space factorial over denominator n factorial space end fraction space equals 1 over 6 space rightwards double arrow space space fraction numerator 8 over denominator n minus 7 end fraction space equals 1 over 6
rightwards double arrow space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space 48 space equals n minus 7 space rightwards double arrow space space space n equals 55 


Q.6. T h e space c o e f f i c i e n t space o f space x to the power of r space end exponent i n space t h e space e x p a n s i o n space o f space
S equals space open parentheses x plus 3 to the power of blank close parentheses to the power of n minus 1 end exponent plus open parentheses x plus 3 close parentheses to the power of n minus 2 end exponent open parentheses x plus 2 close parentheses plus open parentheses x plus 3 close parentheses to the power of n minus 3 end exponent open parentheses x plus 2 close parentheses squared plus
.... plus open parentheses x plus 2 close parentheses to the power of n minus 1 end exponent
i s 

A) 3 to the power of n minus r end exponent minus 2 to the power of n minus r end exponent

B)blank to the power of n C subscript r open parentheses 3 to the power of r minus 2 to the power of r close parentheses

C)blank to the power of n C subscript r open parentheses 3 to the power of n minus r end exponent minus 2 to the power of n minus r end exponent close parentheses

D) none of these 

Explanation-

W e space c a n space w r i t e
space space space S equals fraction numerator open parentheses x plus 3 close parentheses to the power of n minus 1 end exponent open square brackets 1 minus open parentheses begin display style fraction numerator x plus 2 over denominator x plus 3 end fraction end style close parentheses to the power of n close square brackets over denominator 1 minus begin display style fraction numerator x plus 2 over denominator x plus 3 end fraction end style end fraction equals open parentheses 3 plus x close parentheses to the power of n minus open parentheses 2 plus x close parentheses to the power of n
therefore space C o e f f i c e i n t space o f space x to the power of r equals blank to the power of n C subscript r open parentheses 3 to the power of n minus r end exponent minus 2 to the power of n minus r end exponent close parentheses 


Q.7. If 10 to the power of straight n space plus space 3.4 to the power of straight n plus 2 end exponent space plus space straight lambda is exactly divisible by 9 for all straight n space element of space straight N comma then the least positive integral value of straight lambda is

A) 5

B) 3

C) 7

D) 1


Q.8. If a,b are distinct rational numbers, then for all n element of N the number straight a to the power of straight n space minus space straight b to the power of straight n is divisible by

A) a - b

B) a + b

C) 2a - b

D) a - 2b


Q.9. For all n element of N, straight n to the power of 5 over 5 space plus space straight n cubed over 3 space plus space fraction numerator 7 over denominator 15 straight n end fraction is

A) an integer

B) a natural number

C) a positive fraction

D) none of these


Q.10. The sum of n terms of the series 1 + (1 + a) + (1 + a + straight a squared) + (1 + a + straight a squared space plus space straight a cubed) +... is

A) fraction numerator straight n over denominator 1 minus straight a end fraction minus fraction numerator straight a left parenthesis 1 minus straight a to the power of straight n right parenthesis over denominator left parenthesis 1 minus straight a right parenthesis squared end fraction

B) fraction numerator straight n over denominator 1 minus straight a end fraction plus fraction numerator straight a left parenthesis 1 minus straight a to the power of straight n right parenthesis over denominator left parenthesis 1 minus straight a right parenthesis squared end fraction

C) fraction numerator straight n over denominator 1 minus straight a end fraction plus fraction numerator straight a left parenthesis 1 plus straight a to the power of straight n right parenthesis over denominator left parenthesis 1 minus straight a right parenthesis squared end fraction

D) negative fraction numerator straight n over denominator 1 minus straight a end fraction plus fraction numerator straight a left parenthesis 1 minus straight a to the power of straight n right parenthesis over denominator left parenthesis 1 minus straight a right parenthesis squared end fraction