Saturday, September 11, 2021

HSC Differentiation All Solved MCQs: Maharashtra Board

 


Differentiation

Q.1. If y equals tan to the power of negative 1 end exponent open parentheses square root of fraction numerator a minus x over denominator a plus x end fraction end root close parentheses comma space w h e r e space minus a less than x less than a space t h e n space fraction numerator d y over denominator d x end fraction equals

(A) fraction numerator x over denominator square root of a squared minus x squared end root end fraction

(B) fraction numerator a over denominator square root of a squared minus x squared end root end fraction

(C) negative fraction numerator 1 over denominator 2 square root of a squared minus x squared end root end fraction

(D) fraction numerator 1 over denominator 2 square root of a squared minus x squared end root end fraction


Q.2. If s e c open parentheses fraction numerator x plus y over denominator x minus y end fraction close parentheses equals a squared comma space t h e n space fraction numerator d squared y over denominator d x squared end fraction equals_______.

(A) y

(B) x

(C) y over x

(D) 0


Q.3. If y equals cos e c to the power of negative 1 end exponent open parentheses fraction numerator x squared plus 1 over denominator x squared minus 1 end fraction close parentheses space plus space cos to the power of negative 1 end exponent open parentheses fraction numerator x squared minus 1 over denominator x squared plus 1 end fraction close parentheses comma space t h e n space fraction numerator d y over denominator d x end fraction equals

(A) fraction numerator negative 2 over denominator square root of x to the power of 4 minus 1 end root end fraction

(B) 0

(C) fraction numerator 2 over denominator square root of x to the power of 4 minus 1 end root end fraction plus fraction numerator 2 over denominator square root of x to the power of 4 plus 1 end root end fraction

(D) fraction numerator 2 over denominator square root of x to the power of 4 minus 1 end root end fraction


Q.4. If x to the power of y equals y to the power of x comma space t h e n space fraction numerator d y over denominator d x end fraction equals

(A) fraction numerator x left parenthesis x space log space y minus y right parenthesis over denominator y left parenthesis y space log space x minus x right parenthesis end fraction

(B) fraction numerator y left parenthesis y space log space x minus x right parenthesis over denominator x left parenthesis x space log space y minus y right parenthesis end fraction

(C) fraction numerator y squared left parenthesis 1 minus log space x right parenthesis over denominator x squared left parenthesis 1 minus log space y right parenthesis end fraction

(D) fraction numerator y left parenthesis 1 minus log space x right parenthesis over denominator x left parenthesis 1 minus log space y right parenthesis end fraction


Q.5. If x equals a left parenthesis cos space theta plus theta space sin space theta right parenthesis comma space y equals a space left parenthesis sin space theta space minus space theta space cos space theta right parenthesis space t h e n space open square brackets fraction numerator d squared y over denominator d x squared end fraction close square brackets subscript theta equals straight pi over 4 end subscript equals

(A) fraction numerator 8 square root of 2 over denominator a straight pi end fraction

(B) negative fraction numerator 8 square root of 2 over denominator a straight pi end fraction

(C) fraction numerator a straight pi over denominator 8 square root of 2 end fraction

(D) fraction numerator 4 square root of 2 over denominator a straight pi end fraction


Q.6. If y equals tan to the power of negative 1 end exponent open parentheses fraction numerator x over denominator 1 plus square root of 1 minus x squared end root end fraction close parentheses space plus space sin open square brackets 2 tan to the power of negative 1 end exponent open parentheses square root of fraction numerator 1 minus x over denominator 1 plus x end fraction end root close parentheses close square brackets comma space t h e n space fraction numerator d y over denominator d x end fraction equals

(A) fraction numerator x over denominator square root of 1 minus x squared end root end fraction

(B) fraction numerator 1 minus 2 x over denominator square root of 1 minus x squared end root end fraction

(C) fraction numerator 1 minus 2 x over denominator 2 square root of 1 minus x squared end root end fraction

(D) fraction numerator 1 minus 2 x squared over denominator square root of 1 minus x squared end root end fraction


Q.7. If g is the inverse of a function f and f '(x) = fraction numerator 1 over denominator 1 plus x to the power of 7 end fraction, then the value of g'(x) is equal to

(A) 1 plus x to the power of 7

(B) fraction numerator 1 over denominator 1 plus open square brackets g left parenthesis x right parenthesis close square brackets to the power of 7 end fraction

(C) 1 plus open square brackets g left parenthesis x right parenthesis close square brackets to the power of 7

(D) 7 x to the power of 6


Q.8. If x square root of y plus 1 end root plus y square root of x plus 1 end root equals 0 space a n d space x not equal to y space t h e n space fraction numerator d y over denominator d x end fraction equals

(A) 1 over open parentheses 1 plus x close parentheses squared

(B) negative 1 over open parentheses 1 plus x close parentheses squared

(C) left parenthesis 1 plus x right parenthesis squared

(D) negative fraction numerator x over denominator x plus 1 end fraction


Q.9. If y equals sin space left parenthesis 2 space sin to the power of negative 1 end exponent x right parenthesis comma space t h e n space fraction numerator d y over denominator d x end fraction equals

(A) fraction numerator 2 minus 4 x squared over denominator square root of 1 minus x squared end root end fraction

(B) fraction numerator 2 plus 4 x squared over denominator square root of 1 minus x squared end root end fraction

(C) fraction numerator 4 x squared minus 1 over denominator square root of 1 minus x squared end root end fraction

(D) fraction numerator 1 minus 2 x squared over denominator square root of 1 minus x squared end root end fraction


Q.10. If s e c open parentheses fraction numerator x plus y over denominator x minus y end fraction close parentheses equals a squared comma space t h e n space fraction numerator d squared y over denominator d x squared end fraction equals _______.

(A) y

(B) x

(C) y over x

(D) 0


Q.11. Let f left parenthesis 1 right parenthesis equals 3 comma space f apostrophe left parenthesis 1 right parenthesis equals negative 1 third comma space g left parenthesis 1 right parenthesis equals negative 4 space a n d space g apostrophe left parenthesis 1 right parenthesis equals negative 8 over 3. The derivative of square root of open square brackets f left parenthesis x right parenthesis close square brackets squared plus open square brackets g left parenthesis x right parenthesis close square brackets squared end root w.r.t. x at x = 1 is

(A) negative 29 over 15

(B) 7 over 3

(C) 31 over 15

(D) 29 over 15


Q.12. If y is a function of x and log (x + y) = 2xy, then the value of y'(0) =

(A) 2

(B) 0

(C) -1

(D) 1


Q.13. If f left parenthesis x right parenthesis equals sin to the power of negative 1 end exponent open parentheses fraction numerator 4 to the power of x plus begin display style 1 half end style end exponent over denominator 1 plus 2 to the power of 4 x end exponent end fraction close parentheses which of the following is not the derivative of f(x)

(A) fraction numerator 2.4 to the power of x log 4 over denominator 1 plus 4 to the power of 2 x end exponent end fraction

(B) fraction numerator 4 to the power of x plus 1 end exponent log 2 over denominator 1 plus 4 to the power of 2 x end exponent end fraction

(C) fraction numerator 4 to the power of x plus 1 end exponent log 4 over denominator 1 plus 4 to the power of 4 x end exponent end fraction

(D) fraction numerator 2 to the power of 2 left parenthesis x plus 1 right parenthesis end exponent log space 2 over denominator 1 plus 2 to the power of 4 x end exponent end fraction


Q.14. If x equals t space log space t comma space y equals t to the power of t comma space t h e n space fraction numerator d y over denominator d x end fraction equals

(A) e to the power of t

(B) 1 space plus space log space t

(C) fraction numerator e to the power of t over denominator 1 plus log space t end fraction

(D) e to the power of x


Q.15. If y equals s e c left parenthesis tan to the power of negative 1 end exponent x right parenthesis space t h e n space fraction numerator d y over denominator d x end fraction space a t space x equals 1 comma space i s space e q u a l space t o colon

(A) 1 half

(B) 1

(C) fraction numerator 1 over denominator square root of 2 end fraction

(D) square root of 2


Q.16. If y equals 1 minus cos space theta comma space x equals 1 minus sin space theta comma space t h e n space fraction numerator d y over denominator d x end fraction space a t space theta equals straight pi over 4 space i s

(A) -1

(B) 1

(C) 1 half

(D)fraction numerator 1 over denominator square root of 2 end fraction


Q.17. If y = a cos (log x) andA fraction numerator d squared y over denominator d x squared end fraction plus B fraction numerator d y over denominator d x end fraction plus C equals 0 comma then the values of A, B, C are

(A) x squared comma negative x comma negative y

(B) x squared comma space x comma space y

(C) x squared comma space x comma negative y

(D) x squared comma negative x comma space y


Q.18. If x to the power of y equals e to the power of x minus y end exponent comma space t h e n space fraction numerator d y over denominator d x end fraction equals

(A) fraction numerator 1 plus x over denominator 1 plus log space x end fraction

(B) fraction numerator log space x over denominator left parenthesis 1 plus log right parenthesis space x squared end fraction

(C) fraction numerator 1 minus log space x over denominator 1 plus log space x end fraction

(D) fraction numerator 1 minus x over denominator 1 plus log space x end fraction


Q.19. Derivatives of tan cubed theta with respect to s e c cubed theta space a t space theta equals straight pi over 3 is _______.

(A) 3 over 2

(B) fraction numerator square root of 3 over denominator 2 end fraction

(C) 1 half

(D) negative fraction numerator square root of 3 over denominator 2 end fraction


Q.20. If y equals s e c to the power of negative 1 end exponent open parentheses fraction numerator square root of x minus 1 over denominator x plus square root of x end fraction close parentheses space plus space sin to the power of negative 1 end exponent open parentheses fraction numerator x plus square root of x over denominator square root of x minus 1 end fraction close parentheses comma space t h e n space fraction numerator d y over denominator d x end fraction equals.......

(A) x

(B) 1 over x

(C) 1

(D) 0


Q.21. If u equals tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 minus x squared end root minus 1 over denominator x end fraction close parentheses space a n d space v equals tan to the power of negative 1 end exponent open parentheses fraction numerator 2 x square root of 1 minus x squared end root over denominator 1 minus 2 x squared end fraction close parentheses comma space t h e n space fraction numerator d u over denominator d v end fraction space a t space x equals 0 is

(A) 1

(B) fraction numerator negative 1 over denominator 8 end fraction

(C) 1 fourth

(D) 1 over 8


Q.22. If 2 y equals open parentheses c o t to the power of negative 1 end exponent open parentheses fraction numerator square root of 3 cos space x space plus space sin space x over denominator cos space x space minus space square root of 3 sin space x end fraction close parentheses close parentheses squared comma space x element of space open parentheses 0 comma straight pi over 2 close parentheses space t h e n space fraction numerator d y over denominator d x end fraction is equal to

(A) straight pi over 6 minus x

(B) x minus straight pi over 6

(C) straight pi over 3 minus x

(D) 2 x minus straight pi over 3


Q.23. If y left parenthesis alpha right parenthesis equals square root of 2 open parentheses fraction numerator tan space alpha plus c o t space alpha over denominator 1 plus space tan squared space alpha end fraction close parentheses plus fraction numerator 1 over denominator sin squared alpha end fraction end root comma space alpha element of open parentheses fraction numerator 3 straight pi over denominator 4 end fraction comma straight pi close parentheses comma space t h e n space fraction numerator d y over denominator d alpha end fraction space a t space alpha equals fraction numerator 5 straight pi over denominator 6 end fraction is

(A) 4

(B) 4 over 3

(C) negative 1 fourth

(D) -4