Thursday, August 19, 2021

Kinetic Theory Of Gases : Physics Entrance Exam

 



Q.1.  If k is the Boltzmann constant , the average kinetic energy of a gas molecule at absolute temperature T is 

A) k T/2

B) 3 k T/4

C) k T

D) 3 k T/2


Q.2. At room temperature (27degreeC ) the rms speed of the molecules of a certain diatomic gas is found to be 1920 msblank to the power of negative 1 end exponent.The  gas is 

A) Hblank subscript 2

B) Fblank subscript 2

C) Oblank subscript 2

D) CIblank subscript 2 

Explanation-

We know that ϑ subscript r m s end subscript space equals space square root of fraction numerator 3 R T over denominator M end fraction end root which gives 

M equals fraction numerator 3 space R T over denominator ϑ squared subscript r m s end subscript end fraction equals fraction numerator 3 cross times 8.3 cross times 300 over denominator open parentheses 1920 close parentheses squared end fraction
space space space equals space 2 cross times 10 to the power of negative 3 end exponent space k g space equals space 2 space g

 Since  M = 2 , the gas is hydrogen .


Q.3.  If a g as has f degrees of freedom, the ratio C subscript p divided by C subscript v of the gas is 

A) fraction numerator 1 plus f over denominator 2 end fraction

B) 1 plus f over 2

C) 1 half plus f

D) 1 plus 2 over f 

Explanation-

We know that C subscript ϑ = no . of degress of freedom x molar gas constant / 2 or C subscript ϑ equals f R divided by 2. space A l s o space C subscript p minus C subscript ϑ space equals space R
T h e r e f o r e
C subscript p over C subscript ϑ space R over C subscript ϑ plus 1 equals fraction numerator 2 R over denominator f space R end fraction plus 1 equals 2 over f plus 1


Q.4.  Two ideal gases at absolute temperature Tblank subscript 1 and Tblank subscript 2 are mixed . There is no loss of energy in this process . If nblank subscript 1 and nblank subscript 2 are the respective number of molecules of the gases , the temperature of the mixture will be 

Afraction numerator n subscript 1 T subscript 1 space plus space n subscript 2 T subscript 2 over denominator n subscript 1 plus n subscript 2 end fraction

B) fraction numerator n subscript 2 T subscript 1 plus n subscript 1 T subscript 2 over denominator n subscript 1 plus n subscript 2 end fraction

C) T subscript 1 plus n subscript 2 over n subscript 1 T subscript 2

D) T subscript 2 plus n subscript 1 over n subscript 2 T subscript 1 

Explanation-

fraction numerator n subscript 1 T subscript 1 space plus space n subscript 2 T subscript 2 over denominator n subscript 1 plus n subscript 2 end fraction


Q.5.  Four molecules of a gas have speeds 1,2,3 and 4 km s to the power of negative 1 end exponent . The value of the root mean square speed of the gas molecule is 

A)  1 half space square root of 15 space end root space k m space s to the power of negative 1 end exponent

B) 1 half square root of 10 space k m space s to the power of negative 1 end exponent

C) 2.5 space k m space s to the power of negative 1 end exponent

Dsquare root of 15 divided by 2 end root space k m space s to the power of negative 1 end exponent 

Explanation-

The rms speed = open square brackets fraction numerator 1 squared plus 2 squared plus 3 squared plus 4 squared over denominator 4 end fraction close square brackets to the power of 1 divided by 2 end exponent
equals space square root of 15 over 2 end root space k m s to the power of negative 1 end exponent


Q.6.   The average kinetic energy of a molecule of a gas at absolute temperature T is proportional to 

A) 1/T

B) square root of T

C) T

D) Tblank squared 

Explanation-

The average kinetic energy of a molecule of a gas at absolute temperature T is given by straight E space equals space 3 over 2 space kT.


Q.7.  The root mean square speed of the molecules of a gas at absolute temperature T is proportional to 

A) 1/T

B) square root of T

C) T

D) Tblank squared 

Explanation-

The root mean square speed of the molecules of a gas is given by straight ϑ subscript rms space end subscript equals space square root of fraction numerator 3 space kT over denominator straight m end fraction end root.


Q.8.  E subscript 0  and E subscript h respectively represent the average kinetic energy of a molecule of oxygen and hydrogen. If the two gases are at the same temperature , which of the following statements is true ?

A)  E subscript 0 > E subscript h 

B)  E subscript 0 = E subscript h 

C)  E subscript 0 < E subscript h 

D)  Nothing can be said about the magnitude of  E subscript 0 and E subscript h as the information given is insufficient  

Explanation-

The average kinetic energy of molecule = 1 half kT which is independent of the molecular mass .


Q.9.  The temperature of an ideal gas is increased from 120 K to 480 K. If at 120 K , the root mean square speed of the gas molecules is v , then at 480 K it will be 

A) 4 v

B) 2 v

C) v over 2

D) v over 4 

Explanation-

ϑ subscript r m s end subscript equals square root of fraction numerator 3 R T over denominator M end fraction end root space o r space ϑ subscript r m s end subscript proportional to square root of T . 


Q.10.  A vessel contains 1 mole of Oblank subscript 2 gas ( molar mass 32 ) at a temperature T . The pressure of the gas is P . An identical vessel containing one mole of He gas ( molar mass 4 ) at a temperature  2 T has a pressure of 

A) p over 8

B) P

C) 2 P

D) 8 P

Explanation-

For a gas , PV = nRT . Hence 

                   ( P )open parentheses straight P close parentheses o subscript 2 equals fraction numerator open parentheses 1 space m o l e close parentheses space R T over denominator V end fraction
a n d space left parenthesis P right parenthesis subscript H e end subscript equals fraction numerator open parentheses 1 space m o l e close parentheses R open parentheses 2 T close parentheses over denominator V end fraction
therefore fraction numerator open parentheses P close parentheses subscript H e end subscript over denominator open parentheses P close parentheses o subscript 2 end fraction space equals 2 space o r space left parenthesis P right parenthesis subscript H e end subscript equals 2 open parentheses P close parentheses o subscript 2 

 

No comments:

Post a Comment

If you have any doubts, please let me know.