Sunday, August 22, 2021

Thermodynamics: Physics

 


  • Answers are in BOLD Option name.

Q.1.  2 kg of ice at - 20degreeC is mixed with 5 kg of water at 20degreeC in an insulating vessel having a negligible heat capacity . Calculate the final mass of water in the vessel . It is given that the specific heat of water and ice are 1 kcal / kg / degreeC and 0.5 kcal / kg /degreeC respectively and the latent heat of fusion of ice is 80 kcal / kg 

A) 7 kg

B) 6 kg

C) 4 kg

D) 2 kg

Explanation -

Let m kg be the mass f ice melted into water. Heat lost by 5 kg of water=5kgcross times1 kcal/kg/degree straight C cross times20degree straight C=100 kcal. Heat gained=m kgcross times80kcal/kg +2 kg+2 kg cross times0.5 kcal/kg/degree straight Ccross times20degree straight C=80m kcal+20 kcal. Now, heat gained=heat lost. Therefore

80m+20=100

or m=1 kg. Therefore , final mass of water=5kig+1kg=6kg. 


Q.2.  An ideal gas ( y = 1.4 ) expands from 5 cross times 10 to the power of negative 3 space end exponent m cubed to 25 cross times 10 to the power of negative 3 space end exponent m cubed at a constant pressure of 1 cross times 10 to the power of 5  Pa . The heat energy supplied to the gas in this process is 

A) 7 J

B) 70 J

C) 700 J

D) 7000 J

Explanation-

Work done on the gas is 

increment straight W equals straight P increment straight V equals straight P open parentheses straight V subscript straight f minus straight V subscript straight i close parentheses
space space space space space space equals 1 cross times 10 to the power of 5 cross times open parentheses 25 minus 5 close parentheses cross times 10 to the power of negative 3 end exponent
space space space space space space equals 2000 space straight J
The space internal space energy space is space given space by space straight U space equals space fraction numerator PV over denominator open parentheses straight y minus 1 close parentheses end fraction
therefore space straight U subscript straight i equals fraction numerator PV subscript straight i over denominator open parentheses straight y minus 1 close parentheses end fraction comma straight U subscript straight f equals fraction numerator PV subscript straight f over denominator open parentheses straight y minus 1 close parentheses end fraction.
Therefore space comma space change space in space internal space energy space is space
increment straight U equals straight U subscript straight f minus straight U subscript straight i equals fraction numerator straight P over denominator open parentheses straight y minus 1 close parentheses end fraction open parentheses straight V subscript straight f minus straight V subscript straight i close parentheses
space space space space space space space space space space space space space space space space space space equals space fraction numerator 1 cross times 10 to the power of 5 cross times open parentheses 25 minus 5 close parentheses cross times 10 to the power of negative 3 end exponent over denominator open parentheses 1.4 minus 1 close parentheses end fraction equals 5000 space straight J

From the first law of thermodynamics , the heat energy supplied to the gas is 

increment straight Q equals increment straight W plus increment straight U equals 2000 plus 5000
space space space space space space space space space space space space space space space space space space space space space space space space equals 7000 space straight J


Q.3.  How much mechanical work must be done to completely melt 1 gram of ice 0degree C ?

 A) 4.2 J

 B) 80 J

 C) 336 J 

 D) 2268 J

Explanation- 

Work done=latent heat of function of ice = 80 calories=80cross times4.2=336 J. 


Q.4.  A copper block of mass 2 kg is heated to a temperature of 500degreeC and then placed in a large block of ice at 0degreeC . What is the maximum amount of ice that can melt ? The specific heat of copper is 400 J kgblank to the power of negative 1 end exponent degreeCblank to the power of negative 1 end exponent and latent heat of fusion of water is 3.5cross times 10 to the power of 5 space J kgblank to the power of negative 1 end exponent .

A) 4 over 3 kg

B) 6 over 5 kg

C) 8 over 7 kg

D) 10 over 9 kg

Explanation-

Heat energy in copper block=2cross times 400 cross times 500 equals 4 cross times 10 to the power of 5 space straight J. The amount of ice that melts will be maximum if the entire heat energy of the copper block is used up in melting ice. Now, 3.5cross times10 to the power of 5J of heat energy is needed to melt 1 kg of ice into water. Therefore, the amount of ice melted by  4 cross times 10 to the power of 6 straight J  of heat energy is 

fraction numerator 4 cross times 10 to the power of 5 straight J over denominator 3.5 cross times 10 to the power of 5 straight J space kg to the power of minus end fraction equals 8 over 7 kg
hence space the space correct space choice space is space left parenthesis straight c right parenthesis. 


Q.5. Two monoatomic ideal gases 1 and 2 of molecular masses Mblank subscript 1 and Mblank subscript 2  respectively are enclosed in separate containers kept at the same temperature . The ratio of the speed of sound in gas 1 to that in gas 2 is 

A) square root of M subscript 1 over M subscript 2 end root

B) square root of M subscript 2 over M subscript 1 end root

C) M subscript 1 over M subscript 2

D) M subscript 2 over M subscript 1 

Explanation-

The speed of sound in a gas of bulk modulus B and density straight rho is given by

calligraphic v equals square root of straight B over straight rho end root
Bulk space modulus space straight B space is space given space by space straight B equals negative fraction numerator straight V triangle straight P over denominator triangle straight V end fraction
Now comma space for space straight a space perfect space gas comma space PV equals nRT. space Differentiating space at space constant space straight T comma space we space get
straight P increment straight V plus straight V increment straight P equals 0 space or space fraction numerator straight V triangle straight P over denominator triangle straight V end fraction equals negative straight P
Hence space space space space space space space calligraphic v equals square root of straight P over straight P end root
If space straight m space is space the space mass space of space the space gas space ands space straight M space its space molecular space mass comma space
then space PV equals RT over straight M space or space calligraphic v squared equals RT over straight M space or space calligraphic v equals square root of RT over straight M end root
Hence space calligraphic v subscript 1 equals square root of RT over straight M subscript 1 end root and space calligraphic v subscript 2 equals square root of RT over straight M subscript 2 end root space which space give
calligraphic v subscript 1 over calligraphic v subscript 2 equals square root of straight M subscript 1 over straight M subscript 2 end root comma space which space is space choice space left parenthesis straight b right parenthesis. 


Q.6. One mole of a monoatomic ideal gas is contained in a insulated and rigid container . It is heated by passing a current of 2 A for 10 minutes through a filament of resistance 100 capital omega . The change in the internal energy of the gas is 

A) 30 kJ

B) 60 kJ

C) 120 kJ

D) 240 kJ

Explanation-

The heat energy supplied is 

increment straight Q equals straight I squared space straight R space straight t
space space space space space space equals open parentheses 2 close parentheses squared cross times 100 cross times open parentheses 10 cross times 60 close parentheses
space space space space space space equals 240 cross times 10 cubed space straight J equals 240 space kJ

Since incrementV = 0 ; work done incrementW = 0 . From first law of thermodynamics . incrementU = incrementQ = 240 kJ .


Q.7.  A metal sphere of radius r and specific heat S is rotated about an axis passing through its center at a speed of n rotation per second . It is suddenly stopped and 50% o its energy is used in increasing its temperature . Then the rise in temperature of the sphere is : 

A) fraction numerator 2 pi squared n squared r squared over denominator 5 space S end fraction

B) fraction numerator pi squared space n squared over denominator 10 space r squared space S end fraction

C) 7 over 8 space pi r squared space n squared space S

D) fraction numerator 5 space open parentheses space pi space r space n space close parentheses squared over denominator 14 space S end fraction 

Explanation-

Moment space of space inertia space of space the space sphere space straight I space equals space 2 over 5 space Mr squared space.
Given space straight omega space equals straight n space rotations space per space second space equals space 2 πn space rad space straight s to the power of negative 1 end exponent space. space
The space kinetic space energy space is space
KE equals 1 half space Iω squared equals 1 half cross times 2 over 5 space Mr squared cross times open parentheses 2 πn close parentheses squared
space space space space space space space space space space space space space space space space equals 4 over 5 space Mπ squared space straight r squared space straight n squared
Since space half space of space KE space is space converted space into space heat space energy space comma space we space have space
dQ equals 1 half cross times KE space equals 2 over 5 space Mπ squared space straight r squared space straight n squared
Now space dQ equals MSdT space which space gives
dT equals fraction numerator straight d space straight Q over denominator straight M space straight S end fraction space equals space fraction numerator begin display style 2 over 5 end style space straight M space straight pi squared space straight r squared space straight n squared over denominator straight M space straight S end fraction equals fraction numerator 2 straight pi squared space straight r squared space straight n squared over denominator 5 space straight S end fraction
Hence space the space correct space choice space is space left parenthesis straight a right parenthesis space. 


Q.8.  5 moles  of Hydrogen open parentheses y equals 7 over 5 close parentheses  initially at S. T. P.  are compressed adiabatically so that its temperature becomes 400degree C . The increase in the internal energy of the gas in kilo - joules is ( R = 8.30 J molblank to the power of negative 1 end exponentKblank to the power of negative 1 end exponent)

A) 21.55

B) 41.50

C) 65.55

D) 80.55

Explanation-

Given space straight T subscript 1 equals 0 degree straight C equals 273 space straight K comma space straight T subscript 2 equals 400 degree straight C equals 673 space straight K
Work space done space straight W equals fraction numerator nR over denominator open parentheses straight y minus 1 close parentheses end fraction open parentheses straight T subscript 2 minus straight T subscript 1 close parentheses equals fraction numerator 5 cross times 8.3 cross times 400 over denominator open parentheses begin display style 7 over 5 end style minus 1 close parentheses end fraction
space space space space space space space space space space space space space space space space space space equals space 41500 space straight J space equals space 41.5 space kJ

 By convention , the work done on the gas is taken to be negative , i.e. W = - 41.5 kJ . From the first laws of thermodynamics dQ = dU + dW . For an adiabatic process , dQ = 0 . Hence dU = - dW = - ( - 41.5 ) = 41.5 kJ . The positive sign of dU implies that the internal energy increases .


Q.9.  During an adiabatic process , the pressure of a gas is proportional to the cube of its absolute temperature . The value of C subscript p divided by C subscript v  for that gas is : 

A) 3 over 5

B) 4 over 3

C) 5 over 3

D) 3 over 2 

Explanation-

For space an space adiabatic space process space TP to the power of straight n equals straight k space where space straight n space equals space fraction numerator open parentheses 1 minus straight y close parentheses over denominator straight y end fraction comma
straight y equals straight C subscript straight p over straight C subscript straight ϑ space and space straight k space is space straight a space constant space. space Hence space straight P equals open parentheses straight k over straight T close parentheses to the power of 1 divided by straight n end exponent space. space Since space
straight n equals constant space for space straight a space given space gas space comma space we space have space straight P proportional to straight T to the power of negative 1 divided by straight n end exponent space.
Given space straight P proportional to straight T cubed space. space Hence space minus 1 over straight n equals 3
or space minus fraction numerator straight y over denominator 1 minus straight y end fraction equals 3 space which space gives space straight y equals 3 over 2 space which space is space choice space left parenthesis straight d right parenthesis. 


Q.10.  A uniform metallic circular disc , mounted on frictionless bearings , is rotating at an angular frequency omega  about ab axis passing through its center and perpendicular to its plane . The coefficient of linear expansion of the metal is a . If the temperature of the disc is increased by triangle t , the angular frequency of rotation of the disc will 

A) remain unchanged 

B) increased by a omega triangle t

C) increased by 2 a omega triangle t

D) decrease by 2 a omega triangle t

Explanation-

The moment of inertia of the disc about the given axis of rotation is 

straight I equals 1 half space MR to the power of 2 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left parenthesis 1 right parenthesis end exponent

where M is the mass of the disc and R its radius . If the disc is heated , it expands . Hence R increases . The resulting increase in I is obtained by partially differentiating (1).

space space space space space space increment straight I equals 1 half cross times straight M cross times 2 space straight R increment straight R space open parentheses because space straight M equals constant close parentheses
or space space space increment straight I equals MR increment straight R
But space increment straight I equals straight R equals Rα increment straight t. space Therefore space comma
space space space space space increment straight I equals MR squared straight alpha increment straight t space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left parenthesis 2 right parenthesis

Now , the angular momentum of the disc is given by 

space straight J space equals space straight I space straight omega space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left parenthesis 3 right parenthesis

Since no external torque acts , J remains constant . Partially differentiating (3), we have 

space space space space straight I increment straight omega plus straight omega increment straight I equals 0
or space increment straight omega equals negative fraction numerator straight omega increment straight I over denominator straight I end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left parenthesis 4 right parenthesis
Using space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis space in space left parenthesis 4 right parenthesis space comma space we space get space
increment straight omega equals negative 2 space αω increment straight t

The negative sign indicates that the angular frequency decreases due to increase in temperature . 


No comments:

Post a Comment

If you have any doubts, please let me know.