Wednesday, September 1, 2021

Work, Energy and Power : Physics

 


Q.1. A body of mass 0.5 kg travels in a straight line with velocity v = kxblank to the power of 3 divided by 2 end exponent  where k = 5 mblank to the power of negative 1 divided by 2 end exponent  sblank to the power of negative 1 end exponent . What is the work done by the net force during its displacement from x = 0 to x = 2 m ?

A) 25 J

B) 50 J

C) 100 J

D) 150 J

Explanation-

Given space colon space straight v space equals space kx to the power of 3 divided by 2 end exponent
Acceleration space comma space straight a equals dv over dx equals dv over dx dx over dt equals straight v dv over dx
As space straight v squared equals straight k squared straight x cubed space therefore space 2 straight v space dv over dt equals 3 straight k to the power of 2 space end exponent straight x squared
therefore space straight a equals 3 over 2 straight k squared space straight x squared
Force space comma space straight F space equals space ma space equals space 3 over 2 space mk squared straight x squared
Work space done space comma space straight W equals integral straight F space dx space equals space integral subscript 0 superscript 2 3 over 2 space mk squared straight x squared dx
equals 3 over 2 mk squared space open square brackets straight x cubed over 3 close square brackets subscript 0 superscript 2 space equals 3 over 2 cross times 0.5 cross times 5 squared cross times 8 over 3 equals 50 space straight J 


Q.2.  Two particles of masses m and 4m have kinetic energies in the ratio of 2:1. What is the ratio of linear momenta ? 

 A)  fraction numerator 1 over denominator square root of 2 end fraction

 B) 1 half 

 C) 1 fourth 

 D) 1 over 16 

Explanation-

G i v e n space left parenthesis K E right parenthesis subscript 1 equals fraction numerator 1 over denominator 2 end fraction m subscript 1 calligraphic b subscript 1 superscript 2 equals 2 K
a n d space left parenthesis K E right parenthesis subscript 2 equals fraction numerator 1 over denominator 2 end fraction m subscript 1 calligraphic b subscript 2 superscript 2 equals K comma space s o space t h a t
space space space space space space space space space space fraction numerator m subscript 1 calligraphic b subscript 1 superscript 2 over denominator m subscript 1 calligraphic b subscript 2 superscript 2 end fraction equals 2
o r space space space space space space fraction numerator m subscript 1 superscript 2 calligraphic b subscript 1 superscript 2 over denominator m subscript 2 superscript 2 calligraphic b subscript 2 superscript 2 end fraction equals fraction numerator 2 m subscript 1 over denominator m subscript 2 end fraction
o r space space space space space space p subscript 1 over p subscript 2 equals square root of fraction numerator 2 m subscript 1 over denominator m subscript 2 end fraction end root equals square root of 2 over 4 end root equals fraction numerator 1 over denominator square root of 2 end fraction space space space space space space space space space left parenthesis because m subscript 2 equals 4 space m subscript 1 right parenthesis 


Q.3. A running man has the same kinetic energy as that of a boy of half his mass . The man speeds up by 2 m sblank to the power of negative 1 end exponent and the boy changes his speed by x m sblank to the power of negative 1 end exponent so that kinetic energies of the boy and the man are again equal .Then x in m sblank to the power of negative 1 end exponent is 

A) 1/2

B) 2 square root of 2

C) square root of 2

D) 2

Explanation-

Let the mass of man be m . 

Therefore , mass of the boy is straight m over 2 .

As space 1 half space mv subscript 1 superscript 2 equals 1 half open parentheses straight m over 2 close parentheses straight v subscript 2 superscript 2 space space space therefore space straight v subscript 1 equals fraction numerator straight v subscript 2 over denominator square root of 2 end fraction
1 half straight m open parentheses straight v subscript 1 plus 2 close parentheses squared space equals 1 half straight m over 2 open parentheses straight v subscript 2 plus straight x close parentheses squared
therefore straight v subscript 1 equals fraction numerator straight v subscript 2 over denominator square root of 2 end fraction space space space therefore space fraction numerator straight x over denominator square root of 2 end fraction equals 2 space space space space or space straight x equals 2 square root of 2 


Q.4. Which of the following statements is correct?

A) Kinetic energy of a system can be changed without changing its momentum

B) Kinetic energy of a system cannot be changed without changing its momentum

C) Momentum of a system cannot be changed without changing its kinetic energy

D) A system cannot have energy without having momentum

Explanation-

In the explosion of a bomb or inelastic collision between two bodies as force is internal, momentum is conserved while KE changes. Hence the KE of a system can be changed without changing its momentum Similarly, the reverse is also true, e.g., if a force acts perpendicular to motion, work done will be zero and so KE will remain constant. However, the force will change the direction of motion and so the momentum. Further body may have energy (i.e., potential energy) without having momentum.


Q.5. A bus can be stopped by applying a retarding force F when it is moving with speed v on a level road. The distance covered by it before coming to rest is s. IF the load of the bus increases by 50% because of passengers for the same speed and same retarding force. the distance covered by the bus to come to rest shall be

A) 1.5 s

B) 2 s

C) 1 s

D) 2.5 s

Explanation-

F i r s t space c a s e space colon 1 half m v squared equals F s
space space space space space space space space space 1 half open parentheses m plus m over 2 close parentheses v squared equals F s apostrophe
D i v i d i n g space E q. left parenthesis i i right parenthesis space b y space E q. left parenthesis i right parenthesis comma space w e space g e t space fraction numerator s apostrophe over denominator s end fraction equals 3 over 2 o r space s apostrophe equals 1.5 s 


Q.6.  A body of mass mblank subscript 1 moving at a constant speed undergoes an elastic collision with a body of mass m2 initially at rest . The ratio of the kinetic energy of mass mblank subscript 1 after the collision to that before the collision is 

A) open parentheses fraction numerator m subscript 1 minus m subscript 2 over denominator m subscript 1 plus m subscript 2 end fraction close parentheses squared

B) open parentheses fraction numerator m subscript 1 plus m subscript 2 over denominator m subscript 1 minus m subscript 2 end fraction close parentheses squared

C) open parentheses fraction numerator 2 m subscript 1 over denominator m subscript 1 plus m subscript 2 end fraction close parentheses squared

D) open parentheses fraction numerator 2 m subscript 2 over denominator m subscript 1 plus m subscript 2 end fraction close parentheses squared 

Explanation-

Let u subscript 1 be the speed of mass m subscript 1 before the collision. Here u subscript 2 equals 0. Therefore, the speeds of masses  m subscript 1 and m subscript 2 after the collision respectively are

space space space space space space space space space space space space space v subscript 1 equals open parentheses fraction numerator m subscript 1 minus m subscript 2 over denominator m subscript 1 plus m subscript 2 end fraction close parentheses u subscript 1
a n d space space space space space space space space space space v subscript 2 equals open parentheses fraction numerator 2 m subscript 1 over denominator m subscript 1 plus m subscript 2 end fraction close parentheses u subscript 1
therefore space K e space o f space m subscript 1 space a f t e r space c o l l i s i o n space equals space 1 half space m subscript 1 v subscript 1 superscript 2 equals
1 half m subscript 1 space open parentheses fraction numerator m subscript 1 minus m subscript 2 over denominator m subscript 1 plus m subscript 2 end fraction close parentheses squared space u subscript 1 superscript 2. space K E space o f space space m subscript 1 space b e f o r e space c o l l i s i o n equals
1 half m subscript 1 u subscript 1 superscript 2. space T h e space r a t i o space o f space t h e space t w o space i s space open parentheses fraction numerator m subscript 1 minus m subscript 2 over denominator m subscript 1 plus m subscript 2 end fraction close parentheses squared


 











Q.7.  A uniform chain of mass M and length L is held on a horizontal frictionless table with 1 over nth of its length hanging over the edge of the table .The work done is pulling the chain up on the table is 

A) fraction numerator M space g space l over denominator n end fraction

B) fraction numerator M space g space l over denominator 2 space n end fraction

C) fraction numerator M space g space l over denominator n squared end fraction

D) fraction numerator M space g space l over denominator 2 n squared end fraction 

Explanation-

The mass per unit length of the chain m equals M over L.The mass of the hanging portion of the chain is m apostrophe equals fraction numerator m L over denominator n end fraction . This mass can be assumed to be concentrated at the centre of the hanging portion of the chain which is a distance of x equals fraction numerator L over denominator 2 n end fraction from the edge of the table. Therefore, the work done in pulling the hanging portion of the chain on on to the table top is

 W equals m apostrophe g x equals fraction numerator m L over denominator n end fraction cross times g cross times fraction numerator L over denominator 2 n end fraction equals fraction numerator m g L squared over denominator 2 n squared end fraction equals fraction numerator m g L over denominator 2 n squared end fraction.


Q.8.  A body of mass 5 kg rests on a rough horizontal surface of coefficient of friction 0.2 . The body is pulled through a distance of 10 m by a horizontal force of 25 N .The kinetic energy acquired by it is  ( take g = 10 msblank to the power of negative 2 end exponent ) 

A) 200 J

B) 150 J

C) 100 J

D) 50 J

Explanation-

F r i c t i o n space f o r c e space equals space mu space m g space equals space 0.2 cross times 5 cross times 10 equals 10 N.
E f f e c t i v e space f o r c e space F equals a p p l i e d space f o r c e minus f r i c t i o n a l space f o r c e
equals 25 minus 10 equals 15 space N. space K i n e t i c space e n e r g y space equals space w o r k space d o n e space b y space f o r c e space F space i n
p u l l i n g space t h e space b o d y space t h r o u g h space a space d i s tan c e space S left parenthesis equals 10 m right parenthesis space
equals 15 cross times 10 equals 150 space J comma space w h i c h space i s space c h o i c e space left parenthesis b right parenthesis
 


Q.9. One end of an upstretched vertical spring is attached to the ceiling and an object attached to the other end is slowly lowered to its equilibrium position . If S is the gain in spring energy and G is the loss in gravitational potential energy in the process , then 

A) S = G

B) S = 2 G

C) G = 2 S

D) None of these 

Explanation-

At equilibrium position , x = mg over straight k

straight U subscript spring space end subscript equals space 1 half space kx squared space equals space 1 half space straight k space open parentheses mg over straight k close parentheses space straight x
space space space space space space space space space space space space equals space mgx over 2 equals 1 half space open parentheses space loss space in space GPE space close parentheses space rightwards double arrow space straight G space equals space 2 space straight S 


Q.10. A body is moving up an inclined plane of angle theta  with an initial kinetic energy E . The coefficient of friction between the plane and the body is mu.The work done against friction before the body comes to rest is : 

A) fraction numerator mu space cos space theta over denominator E space cos space theta space plus space sin space theta end fraction

B) mu E space cos space theta

C) fraction numerator mu E space cos space theta over denominator mu space cos space theta space minus space sin space theta end fraction

D) fraction numerator mu E space cos space theta over denominator mu space cos space theta space plus space sin space theta end fraction 


No comments:

Post a Comment

If you have any doubts, please let me know.